激光自1960年问世至今,已经极大改变了我们的生活,它的应用涉及了生活中的方方面面:激光扫描仪、激光打印机、激光手术刀、激光光盘、激光通信等等。
激光发射自激光器。激光器核心——激光源可以是气体(气体激光器)也可以是固体(固体激光器)。激光可以有不同的色彩(波长)——从X射线激光(短波长)到可见光激光到远红外激光(长波长)。激光器可以像房子一样大(自由电子激光器)也可以握在掌中(半导体二极管激光器)。
在过去十年里,研究人员一直致力于激光器的小型化。目前,激光器小型化的热点已经转向了纳米激光器,而等离子激光器又是纳米激光器中体积最小的。
计算机和电子工程副教授苏施·库马尔(Sushil Kumar)称,等离子激光器的原理是:用金属薄片或纳米金属颗粒将光能约束在谐振腔中,激光自谐振腔发出。等离子激光器如此袖珍的秘诀在于:谐振腔内的金属薄片或纳米金属颗粒产生了表面等离子体激元(surfaceplasmon polaritons (SPPs))效应,借此效应,激光光子可以在比激光波长还小的空间内产生。
等离子体激光器的这种特性使得其成为光学集成芯片的理想选择,这些芯片可以进行超快速数字信号处理。
但是,在等离子激光实用化之前,还有很多技术难关需要攻克。库马尔称,难点在于让光子从极小的腔体中发射出来。其次,即使光子能够出来,它们也发散得非常厉害。这使得等离子激光没什么实用价值。
之前的等离子激光器大多发射可见光和近红外激光。库马尔团队的等离子激光器则发射波长较长的太赫兹(1012赫兹)波段激光,因此也称太赫兹量子级联激光器(terahertz quantum-cascade lasers,QCL)。该团队的等离子激光器能发射目前最强的太赫兹激光,它可以被用于生物医药、分子谱分析、安检以及天文和大气科学领域。
然而,太赫兹量子级联激光器同样饱受光束散焦的困扰。库马尔团队发明了一种称为分布式反馈的方法来聚焦波束,借此获得波长为100微米的长波激光。储存激光能量的谐振腔由间距10微米的两块金属板组成,长、宽、高分别为10微米、100微米和1400微米。该系统的太赫兹激光波束宽度只有4度乘4度,是目前波束最窄的太赫兹激光。
库马尔在该项目上花费了4年的时间,最近他和他的团队成员——电子工程系博士生吴重兆(Chongzhao Wu,音译)、苏迪普·卡纳尔(Sudeep Khanal)和新墨西哥桑迪亚国家实验室纳米集成技术中心的约翰·L·雷诺(John L. Reno)在美国光学协会的《光学》(Optica)期刊发表了文章《极窄波束太赫兹等离子激光器》。
1970年代,科学家发现激光器谐振腔中的光栅通过布拉格散射,可以提供反馈,稳定激光器的震荡,进而让激光频率固定在一个值。这是分布式反馈的最早引入。
引入光栅的好处有二:一是可以稳定激光频率,滤去频率不符合要求的光子。二则是光栅还可以聚焦光束。聚焦后的光束可以远距离传输和引导到另一处。